
Beyond the ear: central auditory plasticity

There is a current surge of interest in understanding
central auditory plasticity and how these principles
relate to aural rehabilitation and to learning in gen-
eral. Learning more about the science underlying reha-
bilitation might advance the way scientists and clini-
cians approach rehabilitation. For this reason we review
basic principles of central auditory plasticity and how
these principles are being applied to study popula-
tions with auditory-based communication disorders. 

“Neural plasticity” is a term used to describe alter-
ations in the physiological and anatomical properties
of neurons in the brain in association with sensory
stimulation and deprivation. Depending on the expe-
rience, mechanisms of plasticity can involve synaptic
changes that occur rapidly, or slowly over a longer
period of time. Most importantly, experience-related
changes in the brain have perceptual consequences.
For example, when animals are trained to discrimi-
nate new sounds, systematic changes in neural activity
accompany improved behavioral performance.1-8 In
animals, experience-related changes in central audi-
tory function are examined using direct recordings
from various structures along the auditory pathway.
These techniques are invasive and therefore inappro-
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There is a current surge of interest in understanding central
auditory plasticity and how these principles relate to aural
rehabilitation and to learning in general. Knowing more about
the science underlying rehabilitation might advance the way
scientists and clinicians approach rehabilitation. For this reason
we review basic principles of central auditory plasticity and
how these principles are being applied to study populations
with auditory-based communication disorders. Specifically,
we discuss how principles of plasticity relate to aural rehabil-
itation. Therefore, the effects of auditory deprivation and audi-
tory stimulation on central auditory mechanisms are reviewed. 
KEY WORDS: Auditory training - Auditory plasticity - Speech per-
ception - Auditory evoked potentials - Learning disorders.

What happens to the central auditory system when
a person loses their hearing? Does reintroducing

sound, following a period of auditory deprivation, alter
neural response patterns beyond the ear? In people
with healthy ears, how does listening experience alter
the brain’s response to sound? Until recently, little
was known about the effects of auditory deprivation
or stimulation on central auditory mechanisms. How-
ever, there is increasing evidence from human and
animal studies that the central auditory system is “pla-
stic”; primary sensory cortices change with experi-
ence. 
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priate for studying comparable changes in the human
auditory system. Fortunately, functional imaging, mag-
noencephalography (MEG) and auditory evoked poten-
tials (AEPs) have emerged as non-invasive tools for
assessing neural response patterns in humans. All of
these techniques are useful for studying neural pro-
cessing of sound; however, AEPs are particularly sen-
sitive neural indices to neural activity in response to
rapidly changing signals such as speech. Unlike
imaging tools, AEPs can be recorded quickly and inex-
pensively in most clinical settings. This feature makes
AEPs suitable tool for assessing central auditory func-
tion in clinical populations with auditory-based com-
munication disorders. For this reason, identifying AEPs
that reveal central auditory dysfunction, as well as
central auditory plasticity is a current focus of clin-
ical research. 

Here we integrate both animal and human research
findings in order to communicate principles of cen-
tral auditory plasticity and how these notions relate
to clinical populations with auditory communication
disorders. 

The effect of hearing loss 
on the central auditory system

Peripheral hearing loss alters frequency and timing
codes along the auditory pathway. Not only does coch-
lear hearing loss compromise stimulus audibility,
peripheral pathology also alters the way spectral and
temporal information is coded along the auditory
pathway. The consequences of peripheral pathology
can be seen throughout the central auditory system;
including portions of the cochlear nucleus, but espe-
cially in the inferior colliculus, and primary auditory
cortex.9-23 Animal studies have shown that auditory
deprivation disrupts the normal tonotopic organiza-
tion of the central auditory system. For example, age-
related hearing loss results in changes in how fre-
quency is “mapped” in the central auditory system.
When deprived of normal peripheral input, intact
regions of the tonotopic map, adjacent to the impaired
regions, often become responsive.24, 25 It has been sug-
gested that remapped frequency representation could
result in perceptual confusions. However, it is also
possible that increased neural representation might
provide useful information but in a novel form.26

Central auditory reorganization has been shown to
take place following experimentally induced unilat-
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eral hearing loss in animals.16, 18 Although less is known
about the effects of peripheral pathology on the human
auditory system, electrophysiological and magnoen-
cephalographic evidence suggests that auditory dep-
rivation induces neural changes in human auditory
systems as well.27-29 For example, Ponton et al. (2001)
used an AEP called the N1-P2 complex to study the
central effects of profound unilateral deafness. The
N1-P2 complex is a long-latency AEP that reflects
synchronous neural activation of structures in the tha-
lamic-cortical segment of the central auditory system.
Depending on the characteristics of the stimulus used
to evoke the response, the negative peak (N1) occurs
100 ms following stimulus onset and is followed by
a positive peak approaching 200 ms (for a review see
Hyde, 1997).30 Typically, N1 and P2 responses are
larger in amplitude when measured over the hemi-
sphere contralateral to the ear of stimulation. When
Ponton et al. examined patients who had experienced
profound unilateral deafness as a result of acoustic
neuroma removal or other otologic disorders; the typ-
ical asymmetrical response was altered. Specifically,
N1 amplitude was larger in amplitude ipsilateral to
the intact ear in patients with unilateral hearing loss
(Figure 1). Cross sectional analyses recorded from the
unilaterally deaf also revealed that changes in cortical
activity occurred gradually and continued for at least
two years after the onset of hearing loss. Ponton et al.
speculated that increased neural activity ipsilateral to
the normal-hearing ear might have a compensatory
purpose facilitating sound localization. Converging
evidence from both human and animal studies do sug-
gest that underlying neural mechanisms regulating
spatial hearing are plastic. Humans are able to learn
to associate the altered localization cues with direc-
tions in space; similarly, ferrets raised and tested with
one plugged ear learn to localize as accurately as con-
trol animals if the ear-plug is left in place for several
months.31

The effect of stimulation 
on the central auditory system

Just as central auditory plasticity is seen as a con-
sequence of auditory deprivation, changes in the cen-
tral auditory system are known to occur in response
to various forms of auditory stimulation.32-34 Both in
humans and in animals, electrically stimulating the
auditory system alters physiological response prop-
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erties and improves perception. AEPs have been used
to study changes in cortical activity in adults and chil-
dren following cochlear implantation.35-41 For example,
Ponton et al. (1996) examined auditory system plas-
ticity in children fit with cochlear implants. Using
long-latency cortical AEPs, Ponton et al. found that
children who use cochlear implants evoked response
patterns that are immature. Interestingly, the degree
of immaturity was proportionate to the number of
years of auditory deprivation thereby suggesting that
the auditory system does not fully mature without
stimulation. Because the reintroduction of sound,
through electrical stimulation, resumed the normal
maturational process, Ponton et al. concluded that the

auditory system retains its capacity for change (plas-
ticity) during the period of deafness. 

Training experiments provide another opportunity
to study central auditory changes associated with audi-
tory stimulation. Numerous animal studies have shown
that auditory training modifies neural activity.1-3, 5-7,

42-45 Recanzone et al. (1993) 7 trained owl monkeys
to discriminate small tonal frequency differences. After
several weeks of training, monkeys improved their
ability to discriminate the trained frequency and sig-
nificant changes in the tonotopic arrangement of the
auditory cortex were seen. Specifically, the area of the
cortex that corresponded with the trained frequency
was significantly larger than corresponding frequency

msec
-100 0 100 200 300 400

msec
-100 0 100 200 300 400

msec
-100 0 100 200 300 400

C3/C4

C5/C6

C1/C2

Normal-hearing Unilaterally deaf
≤2 years

Unilaterally deaf
>2 years

0.5 µV

P2
P1

N1

Ipsilateral Contralateral

Fig. 1.—Waveforms recorded using homologous ipsilateral-contralateral electrode pairs from a normal-hearing individual, an individual that expe-
rienced unilateral deafness ≤2 years, as well as an individual with unilateral deafness >2 years. Ipsilateral and contralateral response amplitudes
become more equal as the time since onset of deafness increases. Reprinted and modified with permission from Ponton et al., 2001.
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areas in the monkeys that were not trained. These find-
ings, and others, inspired a new wave of research exam-
ining whether comparable brain-behavior relation-
ships exist in humans. 

Similar training effects have been observed in
humans. When spectral or temporal cues are enhanced
with auditory training, training-related changes in
neural activity are recorded.46-51 Figure 2 illustrates
the N1-P2 complex before and after training. In this
study, English speaking participants were trained to
perceive two /ba/ stimuli that differed by 10 ms of pre-
voicing. Pre-voiced stimuli are used phonemically in
languages such as Hindi and Spanish, but not Eng-
lish. Therefore, prior to training, perception approx-
imated chance, and N1-P2 peak-to-peak amplitude
was small for English speaking untrained listeners.
However, when participants were trained to identify
the two stimuli as being different from each other, per-
ception improved and N1-P2 amplitude increased. In
a control condition, participants were tested and then
re-tested without intervening training and no signifi-
cant physiological or perceptual changes occurred.
Because this study demonstrated that N1-P2 complex

reflects training-related changes in neural activity,
long-latency AEPs are now being used to study per-
ceptual changes in people who use cochlear implants.52

On the surface, auditory training may not resemble
stimulation associated with cochlear implant use; how-
ever, there are similarities. During auditory training
the objective is to improve the perception of acoustic
contrasts. In other words, persons are taught to make
new perceptual distinctions. Hearing aids and coch-
lear implants deliver a modified signal to an impaired,
and thus reorganized, auditory system.53, 54 Therefore
this modified signal is a “new” signal that is likely
stimulating “new” neural response patterns in the cen-
tral auditory system. Even if the central auditory system
is capable of reflecting modified spectral and tem-
poral information, variability may lie in the individual’s
ability to integrate these new neural response patterns
into meaningful perceptual events. In fact, many inves-
tigators suggest that some of the perceptual deficits
experienced by hearing impaired individuals may be
due to the inability to make use of these modified
cues.55-63 As a result, training studies have provoked
new theories about performance variability in persons
using cochlear implants and hearing aids. That is,
rather than solely looking at the hearing device and
what technological changes can be made to improve
performance, we must also consider each individual’s
capacity for neural change. In other words, for some
people, performance variability may be related to cen-
tral auditory plasticity rather than the hearing device.
If this is true, then perhaps it may be possible to pre-
dict who may or may not be benefit from using a coch-
lear implant or hearing aid, and who may need addi-
tional rehabilitation such as auditory training. Similar
approaches are currently being used to study normal-
hearing populations with auditory-based learning prob-
lems.

Children with auditory-based 
communication problems

Approximately, 9% of children in the United States
are diagnosed with reading and learning disabilities.
Because many people with learning problems experi-
ence difficulty discriminating fine-grained acoustic
differences found in certain stop consonants, it has
been hypothesized that a subset of these children have
basic differences in the way their brains encode acoustic
components of speech.64, 65 For example, Kraus et al.66
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Fig. 2.—Pre- and post-training mean waveforms measured from electrode
Cz. Pre-training waveforms are thin. Post-training waveforms are thick.
As performance improved, N1-P2 peak-to-peak amplitude increased.
Reprinted and modified with permission from Tremblay et al., 2001.
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found that children with learning problems have more
difficulty detecting rapidly changing spectral cues that
differentiate the speech sounds /da/ and /ga/. However,
these same children have less difficulty discriminating
slower duration differences that are critical for dis-
criminating /ba/ and /wa/. Consistent with the percep-
tual differences, cortical AEPs were abnormal for the
children when evoked by the /da-ga/ but not the /ba-
wa/ stimuli. In contrast, children without learning prob-
lems showed no perceptual or physiological impair-
ments for either stimulus contrast.

Because laboratory-based experiments have shown
that training can improve perception, numerous treat-
ment strategies for dealing with perceptual problems
have become a focus in neuroscience research. Most
recently, computer—based training programs have
emerged in clinical settings across the country. These
programs are designed to capitalize on the plasticity
of the system with the expectation that auditory-based
learning disorders, and the underlying neural mech-
anisms, can be modified through training. Further-
more, studying children who participate in such training
programs provides an important opportunity to study
neurophysiologic and perceptual changes associated
with learning.

At the present time, the efficacy of these programs
is not uniform across children, and it is unclear which
kind of training, for which profile of deficit, results
in perceptual improvement. However, knowing which

children might benefit from training, and how training
may alter the neural representation of sound at var-
ious levels of the auditory pathway will undoubtedly
improve the way we assess and remediate children
with auditory-based communication problems. For
this reason, subjects with auditory-based learning prob-
lems who were participating in a commercial training
(Earobics) regimen were recently evaluated pre and
post-training using a number of behavioral and phys-
iological measures.67 Synchrony of auditory brain-
stem neurons was shown to differ between normal
children and some of the children with learning prob-
lems. In addition, background noise had a deleterious
effect on cortical responses in children with learning
problems.68 Most importantly, according to a small
sample of children, auditory training improved per-
ceptual abilities for children with abnormal brainstem
responses and impaired perception.67 Furthermore,
children with learning problems who practiced with
auditory training software exhibited plasticity of neural
encoding of speech sounds at the cortical, but not sub-
cortical, level of the auditory pathway. This plasticity
was accompanied by perceptual and cognitive gains.69

Figure 3 shows pre- and post-training changes in
speech-sound perception as well as cortical AEP
responses. 

To summarize, children with abnormal ABR
responses showed significant training-associated
improvements in speech-sound perception and also
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Fig. 3.—A) Following training, children with learning problems who had delayed brainstem responses showed improvement (lower just-noticeable
difference score) in the discrimination task while scores for the children with learning problems and normal brainstem recordings did not change. B)
Prior to training, children with learning problems and normal ABR responses showed better correlations of responses recorded in quiet and noise.
Only the children with delayed latencies in the auditory brainstem recordings showed improvements in quiet-to-noise correlations following training.
Reprinted with permission from King et al., 2002.
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increases resistance to deleterious noise as shown in
cortical responses. Taken together, these data suggest
that certain auditory-based learning deficits may orig-
inate from a disorder in auditory neural timing at the
brainstem level. Therefore, measures of auditory based
synchrony, using speech stimuli, could be used to iden-
tify young children at risk for acoustic-phonetic-based
learning problems, as well as separate out those chil-
dren who would likely benefit from auditory training
programs. 

Finally, identifying the brain-behavior relationship
in children with perceptual disorders might help iden-
tify abnormal processes in populations experiencing
similar perceptual deficits. For example, older adults
experience difficulties with speech understanding that
cannot be explained by age-related hearing loss or
cognitive decline.70 Moreover, older adults have dif-
ficulty understanding speech-sounds, especially in the
presence of noise.71 Numerous studies hypothesize
that age-related deficits in speech understanding are
related to a decline in the temporal resolution power
of the auditory system and there is increasing evidence
that aging does alter the neural representation of time-
varying acoustic cues.51, 72, 73 For example, using an
auditory brainstem response (ABR) forward masking
paradigm, it has been shown that older listeners need
a longer gap width for recovery of the probe response.74

Cortical responses elicited by speech signals that con-
tain a gap of silence also elicit abnormal response pat-
terns in older adults.51 Taken together, these findings
suggests that temporal processing problems might
underlie some of the speech perception difficulties
experienced by older adults. Moreover, like children,
older adults might be able to improve their ability to
understand speech through auditory training. 

Conclusions 

In conclusion, animal and human work have estab-
lished that the auditory system is plastic. Not only
does this body of literature enhance our understanding
of brain-behavior relationships, it provides scientific
evidence to support clinical practices such as early
identification, early intervention and aural rehabilita-
tion. Even though the clinical world has developed
practices assuming the “use it, or lose it” philosophy,
we are only beginning to uncover the scientific prin-
ciples underlying these beliefs.

Most importantly, these scientific discoveries will

likely change the way we assess and remediate people
with auditory-based impairments. Knowing that the
brain is plastic helps justify the need for early iden-
tification because there is increasing evidence that the
capacity to change decreases with age.75 As we learn
more about what neural mechanisms are impaired, we
will also learn how to optimize sensory experiences
and take advantage of the plastic nature of the audi-
tory system. 

Finally, from a neuroscience perspective, combining
brain and behavior measures provides the opportunity
to study learning. Whether it is speech-sound learning,
or second language learning, we are beginning to
understand how experience shapes behavior.
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Riassunto

Oltre l’orecchio: plasticità uditiva centrale
Attualmente gli sforzi di numerosi ricercatori sono volti

a comprendere i principi della plasticità uditiva centrale e i
loro rapporti con la riabilitazione uditiva e, più in generale,
con l’apprendimento. Una migliore conoscenza dei pre-
supposti scientifici della riabilitazione uditiva potrebbe por-
tare a un migliorato approccio, scientifico e clinico, nei con-
fronti della riabilitazione stessa. Per tale motivo, in questo
lavoro vengono esaminati i principi basilari della plasticità
uditiva centrale e il modo in cui questi principi vengono
applicati allo studio dei pazienti con disturbi della comuni-
cazione su base uditiva. In particolare, vengono discussi i
rapporti fra principi basilari della plasticità e riabilitazione
uditiva. A questo scopo, vengono riveduti gli effetti della
deprivazione e della stimolazione uditiva sui meccanismi
uditivi centrali.
PAROLE CHIAVE: Potenziali uditivi evocati - Apprendimento,
disordini - Linguaggio, percezione - Riabilitazione - Plasti-
cità uditiva - Training uditivo.
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